3.541 \(\int (d+i c d x)^{3/2} (f-i c f x)^{3/2} (a+b \sinh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=247 \[ \frac{3 x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \left (c^2 x^2+1\right )}+\frac{3 (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2}{16 b c \left (c^2 x^2+1\right )^{3/2}}+\frac{1}{4} x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{b c^3 x^4 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (c^2 x^2+1\right )^{3/2}}-\frac{5 b c x^2 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (c^2 x^2+1\right )^{3/2}} \]

[Out]

(-5*b*c*x^2*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2))/(16*(1 + c^2*x^2)^(3/2)) - (b*c^3*x^4*(d + I*c*d*x)^(3/2)
*(f - I*c*f*x)^(3/2))/(16*(1 + c^2*x^2)^(3/2)) + (x*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x
]))/4 + (3*x*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x]))/(8*(1 + c^2*x^2)) + (3*(d + I*c*d*x
)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x])^2)/(16*b*c*(1 + c^2*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.25224, antiderivative size = 247, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {5712, 5684, 5682, 5675, 30, 14} \[ \frac{3 x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \left (c^2 x^2+1\right )}+\frac{3 (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2}{16 b c \left (c^2 x^2+1\right )^{3/2}}+\frac{1}{4} x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{b c^3 x^4 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (c^2 x^2+1\right )^{3/2}}-\frac{5 b c x^2 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (c^2 x^2+1\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x]),x]

[Out]

(-5*b*c*x^2*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2))/(16*(1 + c^2*x^2)^(3/2)) - (b*c^3*x^4*(d + I*c*d*x)^(3/2)
*(f - I*c*f*x)^(3/2))/(16*(1 + c^2*x^2)^(3/2)) + (x*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x
]))/4 + (3*x*(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x]))/(8*(1 + c^2*x^2)) + (3*(d + I*c*d*x
)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x])^2)/(16*b*c*(1 + c^2*x^2)^(3/2))

Rule 5712

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :>
Dist[((d + e*x)^q*(f + g*x)^q)/(1 + c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n,
x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p,
q] && GeQ[p - q, 0]

Rule 5684

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*
(a + b*ArcSinh[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^
n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[x*(1
+ c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 5682

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*
(a + b*ArcSinh[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 + c^2*x^2]), Int[(a + b*ArcSinh[c*x])^n/Sqrt[1
 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 + c^2*x^2]), Int[x*(a + b*ArcSinh[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=\frac{\left ((d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{\left (1+c^2 x^2\right )^{3/2}}\\ &=\frac{1}{4} x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\left (3 (d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{4 \left (1+c^2 x^2\right )^{3/2}}-\frac{\left (b c (d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int x \left (1+c^2 x^2\right ) \, dx}{4 \left (1+c^2 x^2\right )^{3/2}}\\ &=\frac{1}{4} x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{3 x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \left (1+c^2 x^2\right )}+\frac{\left (3 (d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int \frac{a+b \sinh ^{-1}(c x)}{\sqrt{1+c^2 x^2}} \, dx}{8 \left (1+c^2 x^2\right )^{3/2}}-\frac{\left (b c (d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int \left (x+c^2 x^3\right ) \, dx}{4 \left (1+c^2 x^2\right )^{3/2}}-\frac{\left (3 b c (d+i c d x)^{3/2} (f-i c f x)^{3/2}\right ) \int x \, dx}{8 \left (1+c^2 x^2\right )^{3/2}}\\ &=-\frac{5 b c x^2 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (1+c^2 x^2\right )^{3/2}}-\frac{b c^3 x^4 (d+i c d x)^{3/2} (f-i c f x)^{3/2}}{16 \left (1+c^2 x^2\right )^{3/2}}+\frac{1}{4} x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{3 x (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{8 \left (1+c^2 x^2\right )}+\frac{3 (d+i c d x)^{3/2} (f-i c f x)^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2}{16 b c \left (1+c^2 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.878913, size = 352, normalized size = 1.43 \[ \frac{48 a d^{3/2} f^{3/2} \sqrt{c^2 x^2+1} \log \left (c d f x+\sqrt{d} \sqrt{f} \sqrt{d+i c d x} \sqrt{f-i c f x}\right )+32 a c^3 d f x^3 \sqrt{c^2 x^2+1} \sqrt{d+i c d x} \sqrt{f-i c f x}+80 a c d f x \sqrt{c^2 x^2+1} \sqrt{d+i c d x} \sqrt{f-i c f x}+24 b d f \sqrt{d+i c d x} \sqrt{f-i c f x} \sinh ^{-1}(c x)^2+4 b d f \sqrt{d+i c d x} \sqrt{f-i c f x} \sinh ^{-1}(c x) \left (8 \sinh \left (2 \sinh ^{-1}(c x)\right )+\sinh \left (4 \sinh ^{-1}(c x)\right )\right )-16 b d f \sqrt{d+i c d x} \sqrt{f-i c f x} \cosh \left (2 \sinh ^{-1}(c x)\right )-b d f \sqrt{d+i c d x} \sqrt{f-i c f x} \cosh \left (4 \sinh ^{-1}(c x)\right )}{128 c \sqrt{c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + I*c*d*x)^(3/2)*(f - I*c*f*x)^(3/2)*(a + b*ArcSinh[c*x]),x]

[Out]

(80*a*c*d*f*x*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]*Sqrt[1 + c^2*x^2] + 32*a*c^3*d*f*x^3*Sqrt[d + I*c*d*x]*Sqrt[
f - I*c*f*x]*Sqrt[1 + c^2*x^2] + 24*b*d*f*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]*ArcSinh[c*x]^2 - 16*b*d*f*Sqrt[d
 + I*c*d*x]*Sqrt[f - I*c*f*x]*Cosh[2*ArcSinh[c*x]] - b*d*f*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]*Cosh[4*ArcSinh[
c*x]] + 48*a*d^(3/2)*f^(3/2)*Sqrt[1 + c^2*x^2]*Log[c*d*f*x + Sqrt[d]*Sqrt[f]*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*
x]] + 4*b*d*f*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]*ArcSinh[c*x]*(8*Sinh[2*ArcSinh[c*x]] + Sinh[4*ArcSinh[c*x]])
)/(128*c*Sqrt[1 + c^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.243, size = 0, normalized size = 0. \begin{align*} \int \left ( d+icdx \right ) ^{{\frac{3}{2}}} \left ( f-icfx \right ) ^{{\frac{3}{2}}} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+I*c*d*x)^(3/2)*(f-I*c*f*x)^(3/2)*(a+b*arcsinh(c*x)),x)

[Out]

int((d+I*c*d*x)^(3/2)*(f-I*c*f*x)^(3/2)*(a+b*arcsinh(c*x)),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+I*c*d*x)^(3/2)*(f-I*c*f*x)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b c^{2} d f x^{2} + b d f\right )} \sqrt{i \, c d x + d} \sqrt{-i \, c f x + f} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) +{\left (a c^{2} d f x^{2} + a d f\right )} \sqrt{i \, c d x + d} \sqrt{-i \, c f x + f}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+I*c*d*x)^(3/2)*(f-I*c*f*x)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral((b*c^2*d*f*x^2 + b*d*f)*sqrt(I*c*d*x + d)*sqrt(-I*c*f*x + f)*log(c*x + sqrt(c^2*x^2 + 1)) + (a*c^2*d*
f*x^2 + a*d*f)*sqrt(I*c*d*x + d)*sqrt(-I*c*f*x + f), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+I*c*d*x)**(3/2)*(f-I*c*f*x)**(3/2)*(a+b*asinh(c*x)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+I*c*d*x)^(3/2)*(f-I*c*f*x)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError